Sparsifying Suprema of Gaussian Processes
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore a 49-minute lecture on approximating the supremum of centered Gaussian processes using finite-dimensional Gaussian processes. Delve into the proof that shows how the approximation's dimension depends solely on the target error. Discover the corollary demonstrating that for any norm Φ defined over R^n and target error ε, there exists a norm Ψ with specific properties related to dimensionality and probability. Examine the application of this concept to sparsifying high-dimensional polytopes in Gaussian space. Learn about the implications for computational learning and property testing. Understand the role of Talagrand's majorizing measures theorem in the proof. This talk, presented by Rocco Servedio at the Hausdorff Center for Mathematics, is based on joint work with Anindya De, Shivam Nadimpalli, and Ryan O'Donnell.
Syllabus
Rocco Servedio: Sparsifying suprema of Gaussian processes
Taught by
Hausdorff Center for Mathematics
Related Courses
Sparse Representations in Signal and Image Processing: FundamentalsTechnion - Israel Institute of Technology via edX Filters and Other Potions for Early Vision and Recognition
MITCBMM via YouTube ADSI Summer Workshop- Algorithmic Foundations of Learning and Control, Pablo Parrilo
Paul G. Allen School via YouTube A Function Space View of Overparameterized Neural Networks - Rebecca Willet, University of Chicago
Alan Turing Institute via YouTube Approximation with Deep Networks - Remi Gribonval, Inria
Alan Turing Institute via YouTube