YoVDO

Robust Principal Component Analysis

Offered By: Steve Brunton via YouTube

Tags

Data Analysis Courses Machine Learning Courses Fluid Mechanics Courses Image Processing Courses Entertainment Industry Courses

Course Description

Overview

Explore the robust variant of principal component analysis (RPCA) in this 22-minute video lecture. Learn how robust statistics handle data with corruption or missing entries, making RPCA a crucial algorithm in fields like fluid mechanics, the Netflix prize, and image processing. Discover the basic problem, motivation, and core ideas behind RPCA. Examine its applications in fluid flows and the Netflix Prize challenge. Access additional resources, including the companion book "Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control" by Brunton and Kutz, for a deeper understanding of the topic.

Syllabus

Introduction
Basic Problem
Motivation
Basic Idea
Fluid Flows
Netflix Prize


Taught by

Steve Brunton

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent