Robust Deep Learning Under Distribution Shift
Offered By: Simons Institute via YouTube
Course Description
Overview
Syllabus
Intro
Outline
Standard assumptions
Adversarial Misspellings (Char-Level Attack)
Curated Training Task Fail to Represent Reality
Feedback Loops
Impossibility absent assumptions
Detecting and correcting for label shift with black box predictors
Motivation 1: Pneumonia prediction
Epidemic
Motivation 2: Image Classification
The test-Item effect
Domain Adaptation - Formal Setup
Label Shift (aka Target Shift)
Contrast with Covariate Shift
Black Box Shift Estimation (BBSE)
Confusion matrices
Applying the label shift assumption...
Consistency
Error bound
Detection
Estimation error (MNIST)
Black Box Shift Correction (CIFAR10 w IW-ERM)
A General Pipeline for Detecting Shift
Non-adversarial image perturbations
Detecting adversarial examples
Covariate shift + model misspecification
Implicit bias of SGD on linear networks w. linearly separable data
Impact of IW on ERM decays over MLP training
Weight-Invariance after 1000 epochs
L2 Regularization v Dropout
Deep DA / Domain-Adversarial Nets
Synthetic experiments
Taught by
Simons Institute
Related Courses
Introduction to Deep LearningMassachusetts Institute of Technology via YouTube Taming Dataset Bias via Domain Adaptation
Alexander Amini via YouTube Making Our Models Robust to Changing Visual Environments
Andreas Geiger via YouTube Learning Compact Representation with Less Labeled Data from Sensors
tinyML via YouTube Geo-localization Framework for Real-world Scenarios - Defense Presentation
University of Central Florida via YouTube