Time Series and Biological Network Analysis via Directed Graphs
Offered By: Applied Algebraic Topology Network via YouTube
Course Description
Overview
Explore the application of directed graphs in time series and biological network analysis through this 43-minute lecture. Delve into the concept of extremal events as a method for characterizing experimental time series data. Examine the challenges posed by discrete sampling in experimental measurements and the resulting uncertainty in determining the true timing of extrema. Learn about the construction of a weighted directed acyclic graph (DAG) called an extremal event DAG, utilizing persistent homology techniques to achieve robustness against measurement noise. Investigate the theoretical properties of this DAG, its applications in data comparison, and its relevance to biological systems. Gain insights into how this approach can be applied to genomic time series and biological network analysis, providing a novel perspective on interpreting complex experimental data.
Syllabus
Robin Belton (01/31/24): Time Series and Biological Network Analysis via Directed Graphs
Taught by
Applied Algebraic Topology Network
Related Courses
Policy Analysis Using Interrupted Time SeriesThe University of British Columbia via edX Quantitative Finance
Indian Institute of Technology Kanpur via Swayam Macroeconometric Forecasting
International Monetary Fund via edX Explaining Your Data Using Tableau
University of California, Davis via Coursera Time Series Forecasting
Udacity