YoVDO

Approximate Matrix Eigenvalues, Subspace Iteration With Repeated Random Sparsification

Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube

Tags

Numerical Methods Courses Quantum Chemistry Courses

Course Description

Overview

Explore a conference talk on approximating matrix eigenvalues using subspace iteration with repeated random sparsification. Delve into Robert Webber's presentation from the California Institute of Technology at IPAM's Monte Carlo and Machine Learning Approaches in Quantum Mechanics Workshop. Discover how iterative random sparsification methods can estimate multiple eigenvalues at reduced computational cost, particularly beneficial for high-dimensional problems in quantum chemistry. Follow the progression from traditional numerical methods to innovative approaches leveraging random sampling and averaging. Gain insights into full configuration interaction, convergence, projective estimators, and the intricacies of random sparsification techniques. Understand the impact of bias, population mixing, and random matrix multiplication on eigenvalue approximation. Examine the role of spectral gaps, orthogonalization, and the FRI algorithm in enhancing computational efficiency for quantum chemistry benchmark problems.

Syllabus

Introduction
Background
Traditional methods
Full configuration interaction
Convergence
Projective estimator
Random sparsification
Bias
Sparsification
Fri algorithm
Population mixing
Random matrix multiplication
Spectral gap
Step 2 random sparsification
Orthogonalization
Summary
Conclusion


Taught by

Institute for Pure & Applied Mathematics (IPAM)

Related Courses

Introduction to Statistics: Descriptive Statistics
University of California, Berkeley via edX
Mathematical Methods for Quantitative Finance
University of Washington via Coursera
Dynamics
Massachusetts Institute of Technology via edX
Practical Numerical Methods with Python
George Washington University via Independent
統計学Ⅰ:データ分析の基礎 (ga014)
University of Tokyo via gacco