Induced Functors on Drinfeld Centers via Monoidal Adjunctions
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Explore a 49-minute lecture on induced functors on Drinfeld centers via monoidal adjunctions presented by Robert Laugwitz from the University of Nottingham. Recorded on January 9, 2024, at the Institute for Pure & Applied Mathematics (IPAM) Symmetric Tensor Categories and Representation Theory Workshop at UCLA, delve into the construction of induced (op)lax monoidal functors between corresponding Drinfeld centers given a monoidal adjunction with a valid projection formula. Discover how these functors maintain compatibility with braiding and preserve commutative (co)algebra objects. Examine specific examples, including monoidal Kleisli and Eilenberg-Moore adjunctions, as well as functors induced by extensions of Hopf algebras. Gain insights into this ongoing joint research with Johannes Flake (Bonn) and Sebastian Posur (Münster), expanding your understanding of advanced topics in category theory and representation theory.
Syllabus
Robert Laugwitz - Induced functors on Drinfeld centers via monoidal adjunctions - IPAM at UCLA
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
Unleashing Algebraic Metaprogramming in Julia with Metatheory.jlThe Julia Programming Language via YouTube COSC250 - Functional and Reactive Programming
Independent Free as in Monads - Understanding and Applying Free Monads - Lecture 44
ChariotSolutions via YouTube Generalised Integrated Information Theories
Models of Consciousness Conferences via YouTube Reasoning About Conscious Experience With Axiomatic and Graphical Mathematics
Models of Consciousness Conferences via YouTube