Rigidity Theory for Gaussian Graphical Models - The Maximum Likelihood Threshold of a Graph
Offered By: Fields Institute via YouTube
Course Description
Overview
Explore rigidity theory applications in Gaussian graphical models through this 42-minute Fields Institute lecture. Delve into the concept of maximum likelihood threshold for graphs, its significance in genomics, and how tools from rigidity theory provide insights. Learn about the relationship between convex optimization, global and local rigidity, and their implications for understanding maximum likelihood thresholds. Gain valuable knowledge on this collaborative research effort, bridging mathematical concepts with practical applications in data analysis and genomics.
Syllabus
Introduction
Goal
Gaussian graphical model
convex optimization
maximum likelihood threshold
upper bound
global and local rigidity
implications
Global rigidity
Discussion
Conclusion
Taught by
Fields Institute
Related Courses
Game TheoryStanford University via Coursera Network Analysis in Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera Visualizing Algebra
San Jose State University via Udacity Conceptos y Herramientas para la Física Universitaria
Tecnológico de Monterrey via Coursera Aplicaciones de la Teoría de Grafos a la vida real
Universitat Politècnica de València via UPV [X]