YoVDO

A 1.5-Approximation for Path TSP

Offered By: Hausdorff Center for Mathematics via YouTube

Tags

Travelling Salesman Problem (TSP) Courses Algorithm Design Courses Dynamic programming Courses Combinatorial Optimization Courses Approximation Algorithms Courses

Course Description

Overview

Explore a groundbreaking lecture on the Metric Path Traveling Salesman Problem (path TSP), presenting a 1.5-approximation algorithm. Delve into the innovative approach that deviates from previous techniques by focusing on larger s-t cuts rather than solely on narrow cuts. Discover how a variation of dynamic programming, combined with Karger's seminal result on near-minimum cuts, leads to a well-structured point in the Held-Karp relaxation. Learn about this simpler algorithm that matches Christofides' unbeaten 1.5-approximation guarantee for TSP without introducing additional error terms. Gain insights into how this advancement could potentially lead to improvements in TSP approximation algorithms.

Syllabus

Rico Zenklusen: A 1.5-approximation for path TSP


Taught by

Hausdorff Center for Mathematics

Related Courses

Linear and Discrete Optimization
École Polytechnique Fédérale de Lausanne via Coursera
Linear and Integer Programming
University of Colorado Boulder via Coursera
Approximation Algorithms Part I
École normale supérieure via Coursera
Approximation Algorithms Part II
École normale supérieure via Coursera
Delivery Problem
University of California, San Diego via Coursera