YoVDO

On the 5-Vertex Model

Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube

Tags

Mathematical Modeling Courses Free Energies Courses Surface Tension Courses

Course Description

Overview

Explore a 45-minute lecture on the 5-vertex model, presented by Richard Kenyon from Yale University at the Asymptotic Algebraic Combinatorics 2020 conference. Delve into this generalization of the lozenge tiling model, where each lattice path is assigned a weight per corner. Learn about the collaborative research conducted with Istvan Prause, Jan de Gier, and Sam Watson, focusing on the calculation of free energy, surface tension, and various probabilities. The lecture covers key topics such as the Lawson Model, Box Plane Partition, Eigenvector Formula, and local probabilities. Gain insights into the linearity of determinants and the sure function as part of this in-depth exploration of algebraic combinatorics.

Syllabus

Introduction
The 5Vertex Model
Lawson Model
Surface Tension
Box Plane Partition
Free Energy Calculation
Eigenvector Formula
Proof
Local probabilities
Sure function
Linearity of determinant


Taught by

Institute for Pure & Applied Mathematics (IPAM)

Related Courses

Statistical Molecular Thermodynamics
University of Minnesota via Coursera
Statistical Thermodynamics: Molecules to Machines
Carnegie Mellon University via Coursera
Introduction To Chemical Thermodynamics And Kinetics
Indian Institute of Science Education and Research, Mohali via Swayam
University Chemistry: Molecular Foundations and Global Frontiers Part 1
Harvard University via edX
Thermodynamics - Classical to Statistical
NPTEL via YouTube