YoVDO

Representation Learning and Custom Loss Functions for Atmospheric Data - Christian Lessig

Offered By: Kavli Institute for Theoretical Physics via YouTube

Tags

Representation Learning Courses Big Data Courses Machine Learning Courses Climate Science Courses Earth System Science Courses

Course Description

Overview

Explore representation learning and custom loss functions for atmospheric data in this conference talk from the Machine Learning for Climate KITP conference. Delve into how big data and machine learning algorithms are revolutionizing climate science, enabling detailed analysis of complex Earth system processes. Discover how these advanced techniques can lead to improved understanding of multi-scale interactions in the physical, chemical, and biological realms. Learn about the potential for descriptive inference to drive new theories and validate existing ones in climate research. Gain insights into how data-driven approaches, when combined with modeling experiments and robust parameterizations, can address challenging questions in climate science. Understand the importance of interdisciplinary collaboration in advancing climate change research and the role of this conference in setting the stage for future progress in the field.

Syllabus

Representation learning and custom loss functions for atmospheric data ▸ Christian Lessig


Taught by

Kavli Institute for Theoretical Physics

Related Courses

La Terre comme système : une approche géographique
Sorbonne University via edX
Earth System Science
CEC via Swayam
Machine Learning For Earth System Sciences
Indian Institute of Technology, Kharagpur via Swayam
A Deep Learning Parameterization of Gravity Wave Drag Coupled to an Atmospheric Global Climate Model - Aditi Sheshadri
Kavli Institute for Theoretical Physics via YouTube
Lessons and Outlook for ML Parameterization of Sub Grid Atmospheric Physics From the Vantage of Emulating Cloud Superparameterization - Mike Pritchard
Kavli Institute for Theoretical Physics via YouTube