YoVDO

Relativistic Quantum Mechanics

Offered By: NPTEL via YouTube

Tags

Quantum Mechanics Courses Quantum Electrodynamics Courses

Course Description

Overview

COURSE OUTLINE: You will learn Dirac and Klein-Gordon equations, Lorentz and Poincare groups, Fundamental processes of Quantum Electrodynamics. This course is taught by Professor Apoorva D Patel from IISc Bangalore


Syllabus

Mod-01 Lec-01 Introduction, The Klein-Gordon equation.
Mod-01 Lec-02 Particles and antiparticles, Two component framework.
Mod-01 Lec-03 Coupling to electromagnetism, Solution of the Coulomb problem.
Mod-01 Lec-04 Bohr-Sommerfeld semiclassical solution of the Coulomb problem.
Mod-01 Lec-05 Dirac matrices, Covariant form of the Dirac equation.
Mod-01 Lec-06 Electromagnetic interactions, Gyromagnetic ratio.
Mod-01 Lec-07 The Hydrogen atom problem, Symmetries, Parity, Separation of variables.
Mod-01 Lec-08 The Frobenius method solution, Energy levels and wavefunctions.
Mod-01 Lec-09 Non-relativistic reduction, The Foldy-Wouthuysen transformation.
Mod-01 Lec-10 Interpretation of relativistic corrections, Reflection from a potential barrier.
Mod-01 Lec-11 The Klein paradox, Pair creation process and examples.
Mod-01 Lec-12 Zitterbewegung, Hole theory and antiparticles.
Mod-01 Lec-13 Charge conjugation symmetry, Chirality, Projection operators.
Mod-01 Lec-14 Weyl and Majorana representations of the Dirac equation.
Mod-01 Lec-15 Time reversal symmetry, The PCT invariance.
Mod-01 Lec-16 Arrow of time and particle-antiparticle asymmetry, Band theory for graphene.
Mod-01 Lec-17 Dirac equation structure of low energy graphene states,.
Mod-02 Lec-18 Groups and symmetries, The Lorentz and Poincare groups.
Mod-02 Lec-19 Group representations, generators and algebra, Translations, rotations and boosts.
Mod-02 Lec-20 The spinor representation of SL(2,C), The spin-statistics theorem.
Mod-02 Lec-21 Finite dimensional representations of the Lorentz group, Euclidean and Galilean groups.
Mod-02 Lec-22 Classification of one particle states, The little group, Mass, spin and helicity.
Mod-02 Lec-23 Massive and massless one particle states.
Mod-02 Lec-24 P and T transformations, Lorentz covariance of spinors.
Mod-02 Lec-25 Lorentz group classification of Dirac operators, Orthogonality.
Mod-03 Lec-26 Propagator theory, Non-relativistic case and causality.
Mod-03 Lec-27 Relativistic case, Particle and antiparticle contributions, Feynman prescription.
Mod-03 Lec-28 Interactions and formal perturbative theory, The S-matrix and Feynman diagrams.
Mod-03 Lec-29 Trace theorems for products of Dirac matrices.
Mod-03 Lec-30 Photons and the gauge symmetry.
Mod-03 Lec-31 Abelian local gauge symmetry, The covariant derivative and invariants.
Mod-03 Lec-32 Charge quantisation, Photon propagator, Current conservation and polarisations.
Mod-03 Lec-33 Feynman rules for Quantum Electrodynamics, Nature of perturbative expansion.
Mod-03 Lec-34 Dyson\'s analysis of the perturbation series, Singularities of the S-matrix.
Mod-03 Lec-35 The T-matrix, Coulomb scattering.
Mod-03 Lec-36 Mott cross-section, Compton scattering.
Mod-03 Lec-37 Klein-Nishina result for cross-section.
Mod-03 Lec-38 Photon polarisation sums, Pair production through annihilation.
Mod-03 Lec-39 Unpolarised and polarised cross-sections.
Mod-03 Lec-40 Helicity properties, Bound state formation.
Mod-03 Lec-41 Bound state decay, Non-relativistic potentials.
Mod-03 Lec-42 Lagrangian formulation of QED, Divergences in Green\'s functions.
Mod-03 Lec-43 Infrared divergences due to massless particles, Renormalisation.
Mod-03 Lec-44 Symmetry constraints on Green\'s functions, Furry\'s theorem, Ward-Takahashi identity.
Mod-03 Lec-45 Status of QED, Organisation of perturbative expansion, Precision tests.


Taught by

Physics

Tags

Related Courses

Approximation Methods
University of Colorado Boulder via Coursera
Quantum Computing
Brilliant
Quantum Objects
Brilliant
Exploring concepts of Optics using Wolfram notebook
Coursera Project Network via Coursera
Density Functional Theory
École Polytechnique via Coursera