Reinforcement Learning to Disentangle Quantum States from Partial Observations
Offered By: ICTP Condensed Matter and Statistical Physics via YouTube
Course Description
Overview
Explore a 46-minute lecture on applying reinforcement learning techniques to disentangle quantum states from partial observations. Delve into the intersection of machine learning and quantum physics as speaker Marin BUKOV from MPI PKS presents innovative approaches to tackle complex quantum systems. Gain insights into how reinforcement learning algorithms can be leveraged to extract meaningful information from limited quantum data, potentially revolutionizing our understanding and manipulation of quantum states.
Syllabus
Reinforcement Learning to Disentangle Quantum States from Partial Observations
Taught by
ICTP Condensed Matter and Statistical Physics
Related Courses
Exploring Quantum PhysicsUniversity of Maryland, College Park via Coursera Unpredictable? Randomness, Chance and Free Will
National University of Singapore via Coursera Statistical Mechanics: Algorithms and Computations
École normale supérieure via Coursera Graphene Science and Technology
Chalmers University of Technology via edX Физика как глобальный проект
National Research Nuclear University MEPhI via Coursera