Reinforcement Learning to Disentangle Quantum States from Partial Observations
Offered By: ICTP Condensed Matter and Statistical Physics via YouTube
Course Description
Overview
Explore a 46-minute lecture on applying reinforcement learning techniques to disentangle quantum states from partial observations. Delve into the intersection of machine learning and quantum physics as speaker Marin BUKOV from MPI PKS presents innovative approaches to tackle complex quantum systems. Gain insights into how reinforcement learning algorithms can be leveraged to extract meaningful information from limited quantum data, potentially revolutionizing our understanding and manipulation of quantum states.
Syllabus
Reinforcement Learning to Disentangle Quantum States from Partial Observations
Taught by
ICTP Condensed Matter and Statistical Physics
Related Courses
Физика как глобальный проектNational Research Nuclear University MEPhI via Coursera Advanced statistical physics
École Polytechnique Fédérale de Lausanne via edX Insights on Gradient-Based Algorithms in High-Dimensional Learning
Simons Institute via YouTube Statistical Physics and Computation in High Dimension
Simons Institute via YouTube Computing Partition Functions, Part I
Simons Institute via YouTube