Reinforcement Learning for Gaming - Full Python Course
Offered By: Nicholas Renotte via YouTube
Course Description
Overview
Syllabus
- START
- MARIO
- Mario Mission 1 - Setup Mario
- Mario Mission 2 - Preprocess Environment
- Mario Mission 3 - Build the RL Model
- Mario Mission 4 - Run the RL Model Live
- DOOM
- Doom Mission 1 - Get Vizdoom Working
- Doom Mission 2 - Setup OpenAI Gym Environment
- Doom Mission 3 - Train the RL Agent
- Doom Mission 4 - Test the RL Agent
- Doom Mission 5 - Training for Other Levels
- Doom Mission 6 - Curriculum Learning and Reward Shaping
- STREETFIGHTER
- Streetfighter Mission 1 - Setup Streetfighter
- Streetfighter Mission 2 - Preprocessing
- Streetfighter Mission 3 - Hyperparameter Tuning
- Streetfighter Mission 4 - Fine Tune the Model
- Streetfighter Mission 5 - Testing the Model
- DINO
- Dino Mission 1 - Install and Setup Dependencies
- Dino Mission 2 - Create a Custom OpenAI Gym Environment
- Dino Mission 3 - Train the RL Model
- Dino Mission 4 - Get the Model to Smash Chrome Dino
- Wrap Up
Taught by
Nicholas Renotte
Related Courses
How Google does Machine Learning en EspaƱolGoogle Cloud via Coursera Creating Custom Callbacks in Keras
Coursera Project Network via Coursera Automatic Machine Learning with H2O AutoML and Python
Coursera Project Network via Coursera AI in Healthcare Capstone
Stanford University via Coursera AutoML con Pycaret y TPOT
Coursera Project Network via Coursera