ReFT: Representation Finetuning for Language Models Explained
Offered By: Unify via YouTube
Course Description
Overview
Explore a presentation by Stanford researchers Zhengxuan Wu and Aryaman Arora on their paper "ReFT: Representation Finetuning for Language Models." Discover a novel approach to fine-tuning language models that focuses on modifying internal representations rather than adjusting model weights. Learn how ReFT achieves quick fine-tuning using up to 50 times fewer parameters than traditional Parameter-Efficient Fine-Tuning (PeFT) methods. Gain insights into the potential implications of this technique for more efficient and effective language model adaptation. Delve into the research behind ReFT, its methodology, and its potential impact on the field of natural language processing. Access additional resources, including the full research paper, to deepen your understanding of this innovative approach to language model fine-tuning.
Syllabus
ReFT Explained
Taught by
Unify
Related Courses
From Graph to Knowledge Graph – Algorithms and ApplicationsMicrosoft via edX Social Network Analysis
Indraprastha Institute of Information Technology Delhi via Swayam Stanford Seminar - Representation Learning for Autonomous Robots, Anima Anandkumar
Stanford University via YouTube Unsupervised Brain Models - How Does Deep Learning Inform Neuroscience?
Yannic Kilcher via YouTube Emerging Properties in Self-Supervised Vision Transformers - Facebook AI Research Explained
Yannic Kilcher via YouTube