Reformer - The Efficient Transformer
Offered By: Yannic Kilcher via YouTube
Course Description
Overview
Explore the groundbreaking Reformer model in this informative video, which addresses the resource-intensive nature of the famous Transformer architecture. Learn how the Reformer combines Locality Sensitive Hashing and concepts from Reversible Networks to significantly reduce memory usage and enable processing of much longer input sequences. Discover how this innovative approach allows for handling up to 16K tokens with just 16GB of memory, making it a game-changer for natural language processing tasks. Delve into the technical details of the model's O(LlogL) complexity, reversible residual layers, and their impact on efficiency. Gain insights into the Reformer's performance, which rivals traditional Transformer models while offering substantial improvements in memory efficiency and processing speed for long sequences.
Syllabus
Reformer: The Efficient Transformer
Taught by
Yannic Kilcher
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent