YoVDO

RECL - Responsive Resource-Efficient Continuous Learning for Video Analytics

Offered By: USENIX via YouTube

Tags

USENIX Annual Technical Conference Courses Machine Learning Courses Object Detection Courses Edge Computing Courses

Course Description

Overview

Explore a groundbreaking video analytics framework presented at NSDI '23 that revolutionizes continuous learning for real-time data processing. Dive into RECL (Responsive Resource-Efficient Continuous Learning), a system that seamlessly integrates model reuse and online retraining to swiftly adapt expert DNN models to specific video scenes. Discover how RECL overcomes the limitations of periodic retraining and historical model selection by implementing a shared "model zoo" across edge devices, employing rapid expert model selection, and dynamically optimizing GPU allocation. Learn about the framework's performance gains demonstrated through extensive evaluation on real-world videos for object detection and classification tasks. Gain insights into how RECL addresses the challenges of data drift and resource efficiency in video analytics, potentially transforming the field of continuous learning for large-scale applications.

Syllabus

RECL: Responsive Resource-Efficient Continuous Learning for Video Analytics


Taught by

USENIX

Related Courses

Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Detección de objetos
Universitat Autònoma de Barcelona (Autonomous University of Barcelona) via Coursera
Deep Learning Summer School
Independent
Deep Learning in Computer Vision
Higher School of Economics via Coursera
Computer Vision and Image Analysis
Microsoft via edX