YoVDO

ReBeL - Combining Deep Reinforcement Learning and Search for Imperfect-Information Games

Offered By: Yannic Kilcher via YouTube

Tags

Deep Reinforcement Learning Courses Artificial Intelligence Courses Poker Courses Nash Equilibrium Courses

Course Description

Overview

Explore a comprehensive video lecture on ReBeL, a groundbreaking algorithm that combines deep reinforcement learning and search for imperfect-information games like poker. Delve into the intricacies of this AI breakthrough, which achieves what AlphaZero did for chess and Go. Learn about the challenges of applying self-play reinforcement learning and tree search techniques to games with incomplete information. Discover how ReBeL converges to a Nash Equilibrium and creates a superhuman Heads Up No-Limit Hold'em bot with minimal domain knowledge. Follow along as the lecture covers topics such as game theory, belief representations, and the ReBeL algorithm itself, complete with theoretical foundations and experimental results. Gain insights into the broader impact of this technology on AI research and its potential applications beyond gaming.

Syllabus

- Intro & Overview
- Rock, Paper, and Double Scissor
- AlphaZero Tree Search
- Notation Setup: Infostates & Nash Equilibria
- One Card Poker: Introducing Belief Representations
- Solving Games in Belief Representation
- The ReBeL Algorithm
- Theory & Experiment Results
- Broader Impact
- High-Level Summary


Taught by

Yannic Kilcher

Related Courses

6.S094: Deep Learning for Self-Driving Cars
Massachusetts Institute of Technology via Independent
Natural Language Processing (NLP)
Microsoft via edX
Deep Reinforcement Learning
Nvidia Deep Learning Institute via Udacity
Advanced AI: Deep Reinforcement Learning in Python
Udemy
Self-driving go-kart with Unity-ML
Udemy