Learning-Augmented Online Optimization
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Explore a 49-minute conference talk on learning-augmented online optimization presented by Ravi Kumar from Google Inc. at IPAM's EnCORE Workshop on Computational vs Statistical Gaps in Learning and Optimization. Recorded on February 26, 2024, at the Institute for Pure & Applied Mathematics (IPAM) at UCLA, this presentation delves into the intersection of machine learning and online optimization techniques. Gain insights into how learning algorithms can enhance traditional online optimization methods, potentially leading to more efficient and adaptive problem-solving approaches in various computational domains. Discover the latest research and developments in this field as Kumar shares his expertise on bridging the gap between computational and statistical aspects of learning and optimization.
Syllabus
Ravi Kumar - Learning-Augmented Online Optimization - IPAM at UCLA
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
Machine Learning 1—Supervised LearningBrown University via Udacity Computational Learning Theory and Beyond
openHPI Leslie G. Valiant - Turing Award Lecture 2010
Association for Computing Machinery (ACM) via YouTube Learning of Neural Networks with Quantum Computers and Learning of Quantum States with Graphical Models
Institute for Pure & Applied Mathematics (IPAM) via YouTube Smoothed Analysis for Learning Concepts with Low Intrinsic Dimension
Institute for Pure & Applied Mathematics (IPAM) via YouTube