Intrinsic Flat Stability of the Positive Mass Theorem for Graphical Manifolds
Offered By: Institut des Hautes Etudes Scientifiques (IHES) via YouTube
Course Description
Overview
Explore a 53-minute lecture on the intrinsic flat stability of the positive mass theorem for graphical manifolds, presented by Raquel Perales from IMUNAM Oaxaca at the Institut des Hautes Etudes Scientifiques (IHES). Delve into the rigidity of the Riemannian positive mass theorem for asymptotically flat or hyperbolic manifolds, which states that the total mass of such a manifold is zero if and only if it is isometric to Euclidean or hyperbolic space, respectively. Examine the stability results obtained by Huang-Lee-Sormani, Allen-Perales, and Huang-Lee-Perales for asymptotically flat graphical manifolds using the intrinsic flat distance. Learn about an ongoing project with A. Cabrera Pacheco and M. Graf, investigating analogous results for asymptotically hyperbolic graphical manifolds.
Syllabus
Raquel Perales - Intrinsic flat stability of the positive mass theorem for graphical manifolds
Taught by
Institut des Hautes Etudes Scientifiques (IHES)
Related Courses
Nonlinear Dynamics 1: Geometry of ChaosGeorgia Institute of Technology via Independent Geometría diferencial y Mecánica: una introducción
Universidad de La Laguna via Miríadax Geometría diferencial y Mecánica: una introducción
Universidad de La Laguna via Miríadax Differential Geometry
Math at Andrews via YouTube On Gradient-Based Optimization - Accelerated, Distributed, Asynchronous and Stochastic
Simons Institute via YouTube