Randomized Least Squares Optimization and its Incredible Utility for Large-Scale Tensor Decomposition
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore randomized least squares optimization and its powerful applications in large-scale tensor decomposition in this 33-minute talk by Tamara Kolda from MathSci.ai. Delivered as part of the Extroverted Sublinear Algorithms series at the Simons Institute, delve into the innovative techniques and methodologies that are revolutionizing the field of tensor decomposition. Gain insights into how these advanced optimization methods can be leveraged to tackle complex computational challenges in data analysis and machine learning.
Syllabus
Randomized Least Squares Optimization and its Incredible Utility for Large-Scale Tensor Decomp...
Taught by
Simons Institute
Related Courses
Applied Linear Algebra in AI and MLIndian Institute of Technology, Kharagpur via Swayam AlphaTensor by DeepMind Explained
Yannic Kilcher via YouTube Constraining 3D Fields for Reconstruction and View Synthesis
Andreas Geiger via YouTube Neural Nets for NLP 2018 - Learning from-for Knowledge Graphs
Graham Neubig via YouTube Smoothed Analysis in Unsupervised Learning via Decoupling
IEEE via YouTube