Random Walks II - Lecture 13
Offered By: The Julia Programming Language via YouTube
Course Description
Overview
Explore random walks and related concepts in this lecture from MIT's Computational Thinking Spring series. Dive into Julia programming language fundamentals before delving into Pascal's triangle and its connection to convolutions. Examine random walks as independent and identically-distributed random variables, and learn how to represent them as cumulative sums. Investigate the evolution of probability distributions over time and implement time evolution of probabilities. Follow along with timestamped sections covering introduction, Julia concepts, Pascal's triangle, convolutions, random walks, cumulative sums, and probability distribution evolution.
Syllabus
Introduction.
Julia concepts.
Pascal's triangle.
Convolutions build Pascal's triangle!.
Random walks: Independent and identically-distributed random variables.
Random walks as a cumulative sum.
Cumulative sum.
Evolving probability distributions in time.
Implementing time evolution of probabilities.
Taught by
The Julia Programming Language
Related Courses
Computational PhotographyGeorgia Institute of Technology via Udacity Discrete Time Signals and Systems, Part 1: Time Domain
Rice University via edX Signals and Systems, Part 1
Indian Institute of Technology Bombay via edX Discrete Time Signals and Systems, Part 2: Frequency Domain
Rice University via edX Introduction to Sound and Acoustic Sketching
University St. Joseph via Kadenze