YoVDO

Complexity of Sparse Linear Regression

Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube

Tags

Statistics & Probability Courses Machine Learning Courses Signal Processing Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the complexities of sparse linear regression in this 54-minute lecture presented by Raghu Meka at IPAM's EnCORE Workshop. Delve into the challenges of statistical sample complexity and algorithmic efficiency, particularly with Gaussian covariates. Discover new methods that overcome limitations of traditional approaches like Lasso and basis pursuit, especially when dealing with ill-conditioned covariance matrices. Learn about innovative solutions for cases involving low treewidth dependency graphs, few bad correlations, or correlations arising from few latent variables. Examine the limitations of broad algorithm classes in this field. Gain insights from joint research with Jon Kelner, Frederic Koehler, and Dhruv Rohatgi in this comprehensive exploration of sparse linear regression's fundamental role in signal processing, statistics, and machine learning.

Syllabus

Raghu Meka - Complexity of Sparse Linear Regression - IPAM at UCLA


Taught by

Institute for Pure & Applied Mathematics (IPAM)

Related Courses

Survey of Music Technology
Georgia Institute of Technology via Coursera
Fundamentals of Electrical Engineering Laboratory
Rice University via Coursera
Critical Listening for Studio Production
Queen's University Belfast via FutureLearn
Fundamentos de Comunicaciones Ópticas
Universitat Politècnica de València via UPV [X]
Sense101x: Sense, Control, Act: Measure the Universe, Transform the World
University of Queensland via edX