Functional Inequalities and Concentration of Measure II
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore concentration inequalities, a fundamental tool in probability and asymptotic geometric analysis, in this 48-minute lecture by Radek Adamczak. Delve into the softer approach to concentration based on functional inequalities, focusing on classical inequalities such as the Poincaré inequality and the log-Sobolev inequality. Examine their common properties, including tensorization, and discover how they lead to various forms of concentration for Lipschitz functions. Begin with the continuous setting, covering exponential and Gaussian measures, before progressing to discrete examples. If time allows, investigate concentration results for non-Lipschitz functions derived from functional inequalities. Gain insights into this essential topic that underpins limit theorems and existential results in high dimensions.
Syllabus
Radek Adamczak: Functional inequalities and concentration of measure II
Taught by
Hausdorff Center for Mathematics
Related Courses
Digital to Physical: Repetition + Difference: Component-to-System RelationshipsUniversity of Nevada, Las Vegas via Kadenze Polyworks Modeler ile tersine mühendisliğe giriş! 1.kısım
Udemy Singularities of Teichmueller Harmonic Map Flow - Melanie Rupflin
Institute for Advanced Study via YouTube Alan Turing and the Other Theory of Computing and Can a Machine Be Conscious?
Alan Turing Institute via YouTube Harmonic Maps Between Surfaces and Teichmüller Theory - Lecture 1
International Centre for Theoretical Sciences via YouTube