Functional Inequalities and Concentration of Measure II
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore concentration inequalities, a fundamental tool in probability and asymptotic geometric analysis, in this 48-minute lecture by Radek Adamczak. Delve into the softer approach to concentration based on functional inequalities, focusing on classical inequalities such as the Poincaré inequality and the log-Sobolev inequality. Examine their common properties, including tensorization, and discover how they lead to various forms of concentration for Lipschitz functions. Begin with the continuous setting, covering exponential and Gaussian measures, before progressing to discrete examples. If time allows, investigate concentration results for non-Lipschitz functions derived from functional inequalities. Gain insights into this essential topic that underpins limit theorems and existential results in high dimensions.
Syllabus
Radek Adamczak: Functional inequalities and concentration of measure II
Taught by
Hausdorff Center for Mathematics
Related Courses
Design of Computer ProgramsStanford University via Udacity Intro to Statistics
Stanford University via Udacity Health in Numbers: Quantitative Methods in Clinical & Public Health Research
Harvard University via edX Mathematical Biostatistics Boot Camp 1
Johns Hopkins University via Coursera Statistics
San Jose State University via Udacity