YoVDO

Quantum Tunneling: Modeling with NumPy and Python

Offered By: Dot Physics via YouTube

Tags

Python Courses Quantum Mechanics Courses NumPy Courses Finite Difference Method Courses Superposition Courses Wave Functions Courses Quantum Tunneling Courses Vpython Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore quantum tunneling through a comprehensive video tutorial that guides you in building a model using Python and NumPy. Delve into the theory behind quantum tunneling, learn about the finite difference method, and understand eigenvalue problems. Discover how to create superpositions of eigenstates and set up your Python environment. Follow along as the instructor demonstrates creating potentials, initial wave functions, and Hamiltonian matrices. Learn to calculate eigenvalues and eigenvectors, find c coefficients, and determine Psi(x,t). Conclude with creating simple and VPython animations to visualize quantum tunneling. Access the provided GitHub repository for code examples and refer to the included cheat sheet for quick reference.

Syllabus

- Intro
- Theory
- Finite Difference Method
- Eigenvalue problem
- Superposition of eigenstates
- Python setup
- Creating potential
- Creating initial wave function
- Creating Hamiltonian matrix
- Eigenvalues and eigen vectors
- Finding c coefficients
- Finding Psix,t and simple animation
- VPython animation


Taught by

Dot Physics

Related Courses

Artificial Intelligence for Robotics
Stanford University via Udacity
Intro to Computer Science
University of Virginia via Udacity
Design of Computer Programs
Stanford University via Udacity
Web Development
Udacity
Programming Languages
University of Virginia via Udacity