YoVDO

Quantum Control for Trapped Ion

Offered By: Fields Institute via YouTube

Tags

Quantum Information Courses Quantum Gates Courses Trapped Ions Courses Quantum Control Courses

Course Description

Overview

Explore quantum control techniques for trapped ions in this 33-minute conference talk by Kenneth Brown from Duke University. Delve into the relationship between Hamiltonians and gates, and learn how gates are constructed from Hamiltonians. Examine the intricacies of controlling trapped ions, including specific operations used at Duke University. Investigate control errors and their mitigation through composite pulse sequences, with a focus on systematic errors like overrotation. Analyze the parity-controlled Z rotation experiment, comparing results to randomized compiling. Study the Mølmer-Sørensen gate and frequency-modulated gates, and discuss robust sequences for addressing noise beyond static conditions. Conclude by considering the limitations of these techniques due to power constraints.

Syllabus

Intro
Hamiltonians versus Gates
Gates are built from Hamiltonians
Controlling trapped ions
Ion Control
lon trap operations at Duke
Control errors
Composite Pulse Sequences
Systematic errors: Overrotation
Parity controlled Z Rotation
Experiment repeats the circuit 5 times
Comparison to randomized compiling
Mølmer-Sørensen gate
Frequency modulated gates
Robust sequences beyond static noise
Advantage is limited by power


Taught by

Fields Institute

Related Courses

Quantum Mechanics for Scientists and Engineers 2
Stanford University via edX
Quantum Mechanics for Scientists and Engineers 2
Stanford University via Stanford OpenEdx
Quantum Information Science II
Massachusetts Institute of Technology via edX
The Hardware of a Quantum Computer
Delft University of Technology via edX
Quantum Information Science II: Efficient Quantum Computing - fault tolerance and complexity
Massachusetts Institute of Technology via edX