YoVDO

Quantum Computing and the Difficulty of Simulating Quantum Many-Body Systems - Ignacio Cirac

Offered By: Institute for Advanced Study via YouTube

Tags

Quantum Many-body Systems Courses Quantum Computing Courses Quantum Information Courses Condensed Matter Physics Courses Lattice Gauge Theories Courses

Course Description

Overview

Explore the challenges and potential solutions in simulating quantum many-body systems through this comprehensive high energy theory seminar. Delve into quantum computing algorithms and analog quantum simulators, examining their advantages and limitations. Gain insights into methods for simulating dynamics, finding ground states, and computing physical properties at finite temperatures. Cover topics such as quantum information, condensed matter physics, lattice gauge theories, and quantum chemistry. Learn about heuristic algorithms, classical and quantum approaches, and the removal of fermions in simulations. Understand the goals, challenges, and potential breakthroughs in this cutting-edge field of quantum physics and computation.

Syllabus

Intro
QUANTUM COMPUTING
QUANTUM MANY-BODY PROBLEMS
QUANTUM INFORMATION
DYNAMICS
GOALS AND CHALLENGES
GROUND STATE Heuristic algorithms
FINITE TEMPERATURE
Classical algorithms
Quantum algorithm
FINITE ENERGIES Summary
CONDENSED MATTER PHYSICS
LATTICE GAUGE THEORIES
Removing fermions
QUANTUM CHEMISTRY


Taught by

Institute for Advanced Study

Related Courses

Quantum Information Science II
Massachusetts Institute of Technology via edX
Quantum Information Science II: Efficient Quantum Computing - fault tolerance and complexity
Massachusetts Institute of Technology via edX
Introduction to Quantum Information
Korea Advanced Institute of Science and Technology via Coursera
Quantum Technology: Computing
Purdue University via edX
Quantum Technology: Detectors and Networking
Purdue University via edX