YoVDO

QLoRA - How to Fine-tune an LLM on a Single GPU with Python Code

Offered By: Shaw Talebi via YouTube

Tags

QLoRA Courses LoRA (Low-Rank Adaptation) Courses Quantization Courses Fine-Tuning Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Learn how to fine-tune a large language model (LLM) using QLoRA (Quantized Low-rank Adaptation) on a single GPU in this comprehensive 37-minute video tutorial. Explore the four key ingredients of QLoRA: 4-bit NormalFloat, Double Quantization, Paged Optimizer, and LoRA. Follow along with example Python code to train a custom YouTube comment responder using Mistral-7b-Instruct. Gain insights into quantization techniques, computational efficiency, and practical implementation. Access additional resources including a series playlist, related videos, blog post, Colab notebook, GitHub repository, and Hugging Face model and dataset links for further learning and experimentation.

Syllabus

Intro -
Fine-tuning recap -
LLMs are computationally expensive -
What is Quantization? -
4 Ingredients of QLoRA -
Ingredient 1: 4-bit NormalFloat -
Ingredient 2: Double Quantization -
Ingredient 3: Paged Optimizer -
Ingredient 4: LoRA -
Bringing it all together -
Example code: Fine-tuning Mistral-7b-Instruct for YT Comments -
What's Next? -


Taught by

Shaw Talebi

Related Courses

Digital Signal Processing
École Polytechnique Fédérale de Lausanne via Coursera
Principles of Communication Systems - I
Indian Institute of Technology Kanpur via Swayam
Digital Signal Processing 2: Filtering
École Polytechnique Fédérale de Lausanne via Coursera
Digital Signal Processing 3: Analog vs Digital
École Polytechnique Fédérale de Lausanne via Coursera
Digital Signal Processing 4: Applications
École Polytechnique Fédérale de Lausanne via Coursera