PyTorch Tutorial for Deep Learning
Offered By: GERAD Research Center via YouTube
Course Description
Overview
Explore the fundamentals of deep learning with PyTorch in this comprehensive 2-hour tutorial presented by Antoine Prouvost from Polytechnique Montréal, Canada at GERAD Research Center. Learn how to implement neural networks while receiving theoretical reminders, practical tips, and suggested code workflows. Discover PyTorch's capabilities as a simplified version of NumPy, featuring GPU acceleration and automatic gradient computation. Gain hands-on experience in efficiently training neural networks with minimal code overhead, including a practical exercise in developing a convolutional model for digit recognition. Cover essential topics such as tensors, GPU utilization, automatic differentiation, and dynamic neural networks. This tutorial is ideal for those with a background in Python, NumPy, basic machine learning concepts, and a fundamental understanding of neural networks, including feed-forward processes, backpropagation, and gradient descent.
Syllabus
PyTorch tutorial for deep learning, Antoine Prouvost
Taught by
GERAD Research Center
Related Courses
Deep Learning with Python and PyTorch.IBM via edX Introduction to Machine Learning
Duke University via Coursera How Google does Machine Learning em Português Brasileiro
Google Cloud via Coursera Intro to Deep Learning with PyTorch
Facebook via Udacity Secure and Private AI
Facebook via Udacity