PyTorch DataLoader Source Code Debugging - Batch Building and Normalization
Offered By: deeplizard via YouTube
Course Description
Overview
Debug the PyTorch DataLoader source code to understand how data is pulled from a PyTorch dataset and normalized. Explore the impact of constructor parameters and observe the batch-building process. Follow along as the video demonstrates initializing the sampler based on the shuffle parameter, debugging next(iter(dataloader)), building batches using the specified batch size, retrieving elements from the dataset, and converting tensors to PIL images. Gain insights into the inner workings of PyTorch's data handling mechanisms and improve your understanding of deep learning data processing techniques.
Syllabus
Welcome to DEEPLIZARD - Go to deeplizard.com for learning resources
Overview of Program Code
How to Use Zen Mode
Start the Debugging Process
Initializing the Sampler Based on the Shuffle Parameter
Debugging nextiterdataloader
Building the Batch Using the Batch Size
Get the Elements from Dataset
Tensor to PIL Image
Collective Intelligence and the DEEPLIZARD HIVEMIND
Taught by
deeplizard
Related Courses
Neural Networks for Machine LearningUniversity of Toronto via Coursera 機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera Leading Ambitious Teaching and Learning
Microsoft via edX