YoVDO

PyTorch DataLoader Source Code Debugging - Batch Building and Normalization

Offered By: deeplizard via YouTube

Tags

PyTorch Courses Deep Learning Courses Python Courses Computer Vision Courses Image Processing Courses Data Processing Courses Batch Processing Courses

Course Description

Overview

Debug the PyTorch DataLoader source code to understand how data is pulled from a PyTorch dataset and normalized. Explore the impact of constructor parameters and observe the batch-building process. Follow along as the video demonstrates initializing the sampler based on the shuffle parameter, debugging next(iter(dataloader)), building batches using the specified batch size, retrieving elements from the dataset, and converting tensors to PIL images. Gain insights into the inner workings of PyTorch's data handling mechanisms and improve your understanding of deep learning data processing techniques.

Syllabus

Welcome to DEEPLIZARD - Go to deeplizard.com for learning resources
Overview of Program Code
How to Use Zen Mode
Start the Debugging Process
Initializing the Sampler Based on the Shuffle Parameter
Debugging nextiterdataloader
Building the Batch Using the Batch Size
Get the Elements from Dataset
Tensor to PIL Image
Collective Intelligence and the DEEPLIZARD HIVEMIND


Taught by

deeplizard

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Computational Photography
Georgia Institute of Technology via Coursera
Digital Signal Processing
École Polytechnique Fédérale de Lausanne via Coursera
Creative, Serious and Playful Science of Android Apps
University of Illinois at Urbana-Champaign via Coursera