Provably Efficient Machine Learning for Quantum Many-Body Problems
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore groundbreaking research on applying machine learning techniques to quantum many-body problems in this insightful lecture by Hsin-Yuan Huang from Caltech. Delve into the intersection of quantum physics and artificial intelligence, uncovering provably efficient methods for tackling complex quantum systems. Gain valuable insights into the potential of machine learning in advancing our understanding of quantum mechanics and its applications in computing. This talk, presented at the Quantum Wave in Computing Reunion, offers a deep dive into cutting-edge developments in the field of quantum science and technology.
Syllabus
Provably Efficient Machine Learning for Quantum Many-Body Problems
Taught by
Simons Institute
Related Courses
Intro to Computer ScienceUniversity of Virginia via Udacity Quantum Mechanics for IT/NT/BT
Korea University via Open Education by Blackboard Emergent Phenomena in Science and Everyday Life
University of California, Irvine via Coursera Quantum Information and Computing
Indian Institute of Technology Bombay via Swayam Quantum Computing
Indian Institute of Technology Kanpur via Swayam