Propensity Measurement Using Positive-Unlabelled Bagging
Offered By: Data Science Festival via YouTube
Course Description
Overview
Explore propensity measurement techniques using Positive-Unlabelled (PU) bagging in this 26-minute conference talk from the Data Science Festival. Dive into the semi-supervised binary classification method that trains on datasets where only positive instances are labeled, while the remaining instances are unlabeled or unknown. Learn from speaker Samir Bajaj as he discusses the intricacies of PU learning and its applications in propensity measurement. Gain insights into this powerful technique that can be particularly useful when dealing with partially labeled datasets in various data science and machine learning scenarios.
Syllabus
Propensity measurement using PU bagging
Taught by
Data Science Festival
Related Courses
Data AnalysisJohns Hopkins University via Coursera Computing for Data Analysis
Johns Hopkins University via Coursera Scientific Computing
University of Washington via Coursera Introduction to Data Science
University of Washington via Coursera Web Intelligence and Big Data
Indian Institute of Technology Delhi via Coursera