Propensity Measurement Using Positive-Unlabelled Bagging
Offered By: Data Science Festival via YouTube
Course Description
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore propensity measurement techniques using Positive-Unlabelled (PU) bagging in this 26-minute conference talk from the Data Science Festival. Dive into the semi-supervised binary classification method that trains on datasets where only positive instances are labeled, while the remaining instances are unlabeled or unknown. Learn from speaker Samir Bajaj as he discusses the intricacies of PU learning and its applications in propensity measurement. Gain insights into this powerful technique that can be particularly useful when dealing with partially labeled datasets in various data science and machine learning scenarios.
Syllabus
Propensity measurement using PU bagging
Taught by
Data Science Festival
Related Courses
Advanced PyTorch Techniques and ApplicationsPackt via Coursera 機械学習・深層学習 (ga120)
Waseda University via gacco Artificial Intelligence Foundations: Machine Learning
LinkedIn Learning Efficient Data Feeding and Labeling for Model Training
Pluralsight What are GAN's actually- from underlying math to python code
Udemy