Program-Adaptive Mutational Fuzzing
Offered By: IEEE via YouTube
Course Description
Overview
Explore an innovative algorithm designed to maximize bug detection in black-box mutational fuzzing during this 21-minute IEEE conference talk. Delve into the presenter's approach of leveraging white-box symbolic analysis on execution traces to identify input bit position dependencies. Learn how this dependency relation is utilized to compute a probabilistically optimal mutation ratio for specific program-seed pairs. Discover the promising results, showcasing an average of 38.6% more bugs found compared to three previous fuzzers across 8 applications within the same fuzzing timeframe. Gain insights into this advanced fuzzing technique presented at the 2015 IEEE Symposium on Security & Privacy in San Jose, CA.
Syllabus
Program-Adaptive Mutational Fuzzing
Taught by
IEEE Symposium on Security and Privacy
Tags
Related Courses
Computer SecurityStanford University via Coursera Cryptography II
Stanford University via Coursera Malicious Software and its Underground Economy: Two Sides to Every Story
University of London International Programmes via Coursera Building an Information Risk Management Toolkit
University of Washington via Coursera Introduction to Cybersecurity
National Cybersecurity Institute at Excelsior College via Canvas Network