Geometric Graph-Based Methods for High Dimensional Data
Offered By: Alan Turing Institute via YouTube
Course Description
Overview
Explore geometric graph-based methods for segmenting large datasets with graph-based structures in this lecture by Professor Andrea Bertozzi. Delve into the combination of classical nonlinear PDE-based image segmentation techniques with fast linear algebra methods for computing graph Laplacian spectrum information. Learn about algorithms designed to solve semi-supervised and unsupervised graph cut optimization problems. Discover applications in image processing, including image labeling and hyperspectral video segmentation, as well as machine learning and community detection in social networks. Gain insights into modularity optimization posed as a graph total variation minimization problem. The lecture concludes with a Q&A session, providing an opportunity to deepen understanding of these advanced mathematical concepts and their practical applications in data science and image analysis.
Syllabus
Professor Andrea Bertozzi: "Geometric Graph-Based Methods for High Dimensional Data"
Taught by
Alan Turing Institute
Related Courses
Data Analysis and VisualizationGeorgia Institute of Technology via Udacity Dimensionality Reduction in Python
DataCamp Deep Learning of Dynamics and Coordinates with SINDy Autoencoders
Steve Brunton via YouTube Recent Developments in Supervised Learning With Noise
Simons Institute via YouTube PCA for High-Dimensional Heteroscedastic Data
Fields Institute via YouTube