Geometric Graph-Based Methods for High Dimensional Data
Offered By: Alan Turing Institute via YouTube
Course Description
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore geometric graph-based methods for segmenting large datasets with graph-based structures in this lecture by Professor Andrea Bertozzi. Delve into the combination of classical nonlinear PDE-based image segmentation techniques with fast linear algebra methods for computing graph Laplacian spectrum information. Learn about algorithms designed to solve semi-supervised and unsupervised graph cut optimization problems. Discover applications in image processing, including image labeling and hyperspectral video segmentation, as well as machine learning and community detection in social networks. Gain insights into modularity optimization posed as a graph total variation minimization problem. The lecture concludes with a Q&A session, providing an opportunity to deepen understanding of these advanced mathematical concepts and their practical applications in data science and image analysis.
Syllabus
Professor Andrea Bertozzi: "Geometric Graph-Based Methods for High Dimensional Data"
Taught by
Alan Turing Institute
Related Courses
Advanced Machine LearningThe Open University via FutureLearn Advanced Statistics for Data Science
Johns Hopkins University via Coursera Algebra & Algorithms
Moscow Institute of Physics and Technology via Coursera Algèbre Linéaire (Partie 2)
École Polytechnique Fédérale de Lausanne via edX Linear Algebra III: Determinants and Eigenvalues
Georgia Institute of Technology via edX