Uncertainty Quantification for Bayesian Inverse Problems - Efficient Methods in the Small Noise Regime
Offered By: Isaac Newton Institute for Mathematical Sciences via YouTube
Course Description
Overview
Explore uncertainty quantification for Bayesian inverse problems in this Kirk Lecture delivered by Professor Claudia Schillings from Freie Universität Berlin. Delve into efficient methods for the small noise regime as part of the programme on the mathematical and statistical foundation of future data-driven engineering. Gain insights into advanced mathematical concepts and their applications in engineering during this 57-minute talk presented at the Isaac Newton Institute for Mathematical Sciences.
Syllabus
Date: 11 April 2023 - 16:00 to
Taught by
Isaac Newton Institute for Mathematical Sciences
Related Courses
Data Science: Inferential Thinking through SimulationsUniversity of California, Berkeley via edX Decision Making Under Uncertainty: Introduction to Structured Expert Judgment
Delft University of Technology via edX Probabilistic Deep Learning with TensorFlow 2
Imperial College London via Coursera Agent Based Modeling
The National Centre for Research Methods via YouTube Sampling in Python
DataCamp