Privacy-Preserving Machine Learning
Offered By: Toronto Machine Learning Series (TMLS) via YouTube
Course Description
Overview
Explore privacy-preserving machine learning techniques in this 31-minute conference talk by Patricia Thaine, CEO of Private AI and PhD Candidate at the University of Toronto. Gain strategic insights into addressing privacy challenges in machine learning pipelines through practical examples. Learn about various privacy tools including federated learning, homomorphic encryption, differential privacy, anonymization/pseudonymization, secure multiparty computation, and trusted execution environments. Understand how to evaluate and implement these tools based on risk assessment, implementation complexity, and available computational resources. Discover effective approaches to create privacy-preserving machine learning solutions for organizations facing diverse privacy goals.
Syllabus
Privacy-Preserving Machine Learning
Taught by
Toronto Machine Learning Series (TMLS)
Related Courses
Private Stochastic Convex Optimization: Optimal Rates in Linear TimeAssociation for Computing Machinery (ACM) via YouTube ABY3 - A Mixed Protocol Framework for Machine Learning
Association for Computing Machinery (ACM) via YouTube Protect Privacy in a Data-Driven World - Privacy-Preserving Machine Learning
RSA Conference via YouTube Privacy-Preserving Algorithms for Decentralised Collaborative Learning - Dr Aurélien Bellet
Alan Turing Institute via YouTube CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU
IEEE via YouTube