Principal Component Analysis - PCA Clearly Explained - 2015
Offered By: StatQuest with Josh Starmer via YouTube
Course Description
Overview
Learn the fundamentals of Principal Component Analysis (PCA) in this 20-minute educational video. Explore key concepts such as dimensions, variance, covariance, and loading scores. Discover how to interpret PCA and MDS plots commonly found in RNA-seq results. Follow along with step-by-step explanations of PCA performance, including practical examples using R code. Gain insights into diagnostics using scree plots and understand the relationship between loadings and eigenvectors. Perfect for those seeking a clear and concise explanation of this essential statistical technique used in data analysis and dimensionality reduction.
Syllabus
Awesome song and introduction
An introduction to dimensions
Why we can omit dimensions
Principal components in terms of variance and covariance!!!
Transforming samples with loading scores
Review of main ideas
Scree plots for diagnostics
Loadings and Eignvectors
Taught by
StatQuest with Josh Starmer
Related Courses
Intro to StatisticsStanford University via Udacity Introduction to Data Science
University of Washington via Coursera Passion Driven Statistics
Wesleyan University via Coursera Information Visualization
Indiana University via Independent DCO042 - Python For Informatics
University of Michigan via Independent