Practical Individual Fairness Algorithms in Machine Learning
Offered By: Toronto Machine Learning Series (TMLS) via YouTube
Course Description
Overview
Explore the concept of Individual Fairness (IF) in machine learning through this 44-minute conference talk by Mikhail Yurochkin, Research Staff Member at IBM Research and MIT-IBM Watson AI Lab. Delve into the challenges of implementing IF in AI models and discover the innovative Distributional Individual Fairness (DIF) approach. Learn how DIF introduces a transport-based regularizer that can be easily integrated into modern training algorithms, allowing for control over the fairness-accuracy tradeoff. Understand the theoretical guarantees and practical applications of DIF in achieving individual fairness across various tasks, including its extension to Learning to Rank problems. Gain insights into creating ML models that treat similar individuals similarly, addressing crucial ethical concerns in AI development.
Syllabus
Practical Individual Fairness Algorithms
Taught by
Toronto Machine Learning Series (TMLS)
Related Courses
Optimal Transport and PDE - Gradient Flows in the Wasserstein MetricSimons Institute via YouTube Crash Course on Optimal Transport
Simons Institute via YouTube Learning From Ranks, Learning to Rank - Jean-Philippe Vert, Google Brain
Alan Turing Institute via YouTube Optimal Transport for Machine Learning - Gabriel Peyre, Ecole Normale Superieure
Alan Turing Institute via YouTube Regularization for Optimal Transport and Dynamic Time Warping Distances - Marco Cuturi
Alan Turing Institute via YouTube