Practical Dynamic Graph Algorithms - Data Structures and Connections Between Models
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore dynamic graph algorithms and their practical applications across multiple computational models in this 43-minute lecture by Quanquan Liu from Northwestern University. Delve into efficient data structures and techniques for solving dynamic graph problems in shared-memory work-depth, MPC, and differential privacy models. Examine specific data structures used for k-core decomposition, densest subgraph, triangle counting, and other local graph problems. Gain insights into the characteristics that make these structures efficient across various computational paradigms, enhancing your understanding of dynamic algorithms in practical settings.
Syllabus
Practical Dynamic Graph Algorithms: Data Structures and Connections Between Models
Taught by
Simons Institute
Related Courses
Natural Language ProcessingColumbia University via Coursera Developmental Robotics
University of Naples Federico II via Federica Network Dynamics of Social Behavior
University of Pennsylvania via Coursera User-centric Computing For Human-Computer Interaction
Indian Institute of Technology Guwahati via Swayam People, Networks and Neighbours: Understanding Social Dynamics
University of Groningen via FutureLearn