Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures
Offered By: ACM SIGPLAN via YouTube
Course Description
Overview
Explore a 20-minute video presentation from POPL 2024 conference introducing Gaussian Semantics, a novel approach for approximating probabilistic program semantics using Gaussian mixtures. Learn about the universal approximation theorem and a second-order Gaussian approximation (SOGA) method for matching moments analytically. Discover how this technique provides accurate estimates for complex models, outperforming alternative methods in collaborative filtering and programs with mixed continuous and discrete distributions. Examine case studies demonstrating SOGA's improved accuracy and computational efficiency compared to existing techniques.
Syllabus
[POPL'24] Inference of Probabilistic Programs with Moment-Matching Gaussian Mixtures
Taught by
ACM SIGPLAN
Related Courses
Statistical RethinkingMax Planck Institute for Evolutionary Anthropology via YouTube Introducción a las bases del lenguaje R, con RStudio
Udemy Bayesian Networks 1 - Inference - Stanford CS221: AI
Stanford University via YouTube The Hamiltonian Monte Carlo Revolution Is Open Source - Probabilistic Programming with PyMC3
Open Data Science via YouTube Computational Models of Cognition - Reverse-Engineering Common Sense in the Human Mind and Brain Pt 1
MITCBMM via YouTube