YoVDO

PLS Number of Components

Offered By: Chemometrics & Machine Learning in Copenhagen via YouTube

Tags

Machine Learning Courses Data Analysis Courses Regression Analysis Courses Cross-Validation Courses Chemometrics Courses Outlier Detection Courses

Course Description

Overview

Learn about validating Partial Least Squares (PLS) models in this 26-minute video, focusing on selecting the optimal number of components. Explore the importance of model validation, outlier detection, and regression error measures. Examine predicted versus measured plots and delve into cross-validation techniques, including a detailed look at chemical analyses by six laboratories. Discover a secret trick related to cross-validation and gain insights into rules of thumb for making informed choices when validating PLS models.

Syllabus

Validation of PLS models - always important!
Outliers - why, how and when...?
Regression - Error measures
Predicted versus Measured plot
Cross validation - being smart with segments • Chemical analyses by six laboratories
Cross validation in more detail!
Secret trick - the other thing cross-validation does
Choice is not always simple - A few rules of thumb Rule


Taught by

Chemometrics & Machine Learning in Copenhagen

Tags

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent