Maximum Consensus Floating Point Solutions for Infeasible Low-Dimensional Linear Programs - Lecture
Offered By: ACM SIGPLAN via YouTube
Course Description
Overview
Explore a novel method for efficiently solving infeasible low-dimensional linear programs (LDLPs) with billions of constraints and a small number of unknown variables in this 18-minute conference talk from PLDI 2024. Delve into the innovative approach presented by Mridul Aanjaneya and Santosh Nagarakatte from Rutgers University, which focuses on generating floating point solutions that satisfy the maximum number of constraints in the context of the RLibm project for creating correctly rounded math libraries. Learn how the researchers leverage the geometric duality between linear programs and convex hulls, using the convex hull as an intermediate representation to split constraints into feasible and infeasible subsets. Discover the key idea of identifying a superset of infeasible constraints by computing the convex hull in 2-dimensions, and how this approach leads to improved performance of RLibm polynomials while significantly reducing solving time for corresponding linear programs.
Syllabus
[PLDI24] Maximum Consensus Floating Point Solutions for Infeasible Low-Dimensional Linear(…)
Taught by
ACM SIGPLAN
Related Courses
Analyse numérique pour ingénieursÉcole Polytechnique Fédérale de Lausanne via Coursera Linear Differential Equations
Boston University via edX MatLab para principiantes
Universidad Católica de Murcia via Miríadax Single Variable Calculus
University of Pennsylvania via Coursera Introduction to numerical analysis
Higher School of Economics via Coursera