YoVDO

Compiling Probabilistic Programs for Variable Elimination with Information Flow

Offered By: ACM SIGPLAN via YouTube

Tags

Probabilistic Programming Courses Type System Courses Recursion Courses Compiler Design Courses Denotational Semantics Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a 19-minute video presentation from PLDI 2024 that delves into compiling probabilistic programs for variable elimination using information flow. Learn about a novel approach to variable elimination and marginal inference in probabilistic programming languages that support bounded recursion and discrete distributions. Discover how the presented compiler eliminates probabilistic side effects and uses an innovative information-flow type system to factorize computations. Understand how this method effectively decomposes complex marginal-inference problems into tractable subproblems for recursive programs with dynamically recurring substructure. Examine the proof of compilation correctness through denotational semantics preservation and the development of a denotational, logical-relations model of information-flow types in a measure-theoretic setting. Review experimental results demonstrating the compiler's ability to subsume PTIME algorithms for recursive models and its scalability with inference problem size.

Syllabus

[PLDI24] Compiling Probabilistic Programs for Variable Elimination with Information Flow


Taught by

ACM SIGPLAN

Related Courses

Statistical Rethinking
Max Planck Institute for Evolutionary Anthropology via YouTube
Introducción a las bases del lenguaje R, con RStudio
Udemy
Bayesian Networks 1 - Inference - Stanford CS221: AI
Stanford University via YouTube
The Hamiltonian Monte Carlo Revolution Is Open Source - Probabilistic Programming with PyMC3
Open Data Science via YouTube
Computational Models of Cognition - Reverse-Engineering Common Sense in the Human Mind and Brain Pt 1
MITCBMM via YouTube