Phase Transition Theory for the Score Degradation of Machine Learning Models
Offered By: Fields Institute via YouTube
Course Description
Overview
Explore the intriguing concept of phase transition theory applied to machine learning model performance in this 27-minute lecture from the Fourth Symposium on Machine Learning and Dynamical Systems. Delivered by Markus Abel of Ambrosys GmbH, delve into the theoretical framework explaining how and why the scores of machine learning models degrade over time. Gain insights into the parallels between physical systems and machine learning algorithms, and understand the critical points at which model performance undergoes significant changes. Suitable for researchers, data scientists, and machine learning enthusiasts interested in the theoretical underpinnings of model behavior and longevity.
Syllabus
Phase Transition Theory fo the Score Degradation of Machine Learning Models
Taught by
Fields Institute
Related Courses
Introduction to Dynamical Systems and ChaosSanta Fe Institute via Complexity Explorer Nonlinear Dynamics 1: Geometry of Chaos
Georgia Institute of Technology via Independent Linear Differential Equations
Boston University via edX Algorithmic Information Dynamics: From Networks to Cells
Santa Fe Institute via Complexity Explorer Nonlinear Differential Equations: Order and Chaos
Boston University via edX