YoVDO

PEtab.jl - Efficient Parameter Estimation for Dynamic Models

Offered By: The Julia Programming Language via YouTube

Tags

Julia Courses Parameter Estimation Courses SciML Courses ModelingToolkit.jl Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore efficient parameter estimation for dynamic models in biology and pharmaceutical research using PEtab.jl, a Julia package leveraging the SciML ecosystem. Learn how to import problems specified in the PEtab standard format, utilize SBMLImporter.jl for importing SBML models, and set up parameter estimation problems directly in Julia using Catalyst.jl or ModelingToolkit.jl. Discover various gradient computation methods, including ForwardDiff and SciMLSensitivity, and gain insights on selecting the most appropriate approach. Evaluate the performance of PEtab.jl compared to existing tools like pyPESTO and AMICI through an extensive benchmark on real models with real data, addressing the question of Julia's suitability for parameter estimation in dynamic models within biological and pharmaceutical contexts.

Syllabus

PEtab.jl - Efficient parameter estimation for dynamic models | Persson | JuliaCon 2024


Taught by

The Julia Programming Language

Related Courses

Discrete Inference and Learning in Artificial Vision
École Centrale Paris via Coursera
Observation Theory: Estimating the Unknown
Delft University of Technology via edX
Computational Probability and Inference
Massachusetts Institute of Technology via edX
Probabilistic Graphical Models 3: Learning
Stanford University via Coursera
Applied Time-Series Analysis
Indian Institute of Technology Madras via Swayam