YoVDO

Period Mappings at Infinity - Recent Developments II

Offered By: IMSA via YouTube

Tags

Hodge Theory Courses Algebraic Geometry Courses Compactifications Courses Moduli Space Courses

Course Description

Overview

Explore recent developments in period mappings at infinity in this advanced mathematics lecture. Delve into Hodge theory's role in connecting algebraic varieties, moduli, algebraic groups, and associated representations. Examine the framework for understanding asymptotic properties of period maps, focusing on classical nilpotent and sl2 orbit theorems. Investigate how these theorems assign Hodge theoretic invariants to degenerations of smooth projective varieties and their applications in constructing and studying compactifications of moduli spaces. Learn about recent work expanding Hodge theory beyond classical cases, covering joint research with prominent mathematicians in the field. Gain insights into the challenges and progress made in applying these concepts beyond the traditional settings of principally polarized abelian varieties (ppav) and K3 surfaces.

Syllabus

Period Mappings at Infinity: Recent Developments II


Taught by

IMSA

Related Courses

One-Dimensional Objects - Algebraic Topology
Insights into Mathematics via YouTube
Distinguishing Monotone Lagrangians via Holomorphic Annuli - Ailsa Keating
Institute for Advanced Study via YouTube
Pseudoholomorphic Curves with Boundary - Can You Count Them? Can You Really? - Sara Tukachinsky
Institute for Advanced Study via YouTube
Mixing Surfaces, Algebra, and Geometry
Joint Mathematics Meetings via YouTube
Representations of Fuchsian Groups, Parahoric Group Schemes by Vikraman Balaji
International Centre for Theoretical Sciences via YouTube