YoVDO

Performance of Linear Solvers in Tensor-Train Format on Current Multicore Architectures

Offered By: NHR@FAU via YouTube

Tags

Linear Algebra Courses Linear Systems Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Attend a 34-minute NHR PerfLab Seminar featuring Melven Röhrig-Zöllner from the German Aerospace Center (DLR). Explore the node-level performance of numerical algorithms for high-dimensional problems in compressed tensor format. Focus on two key areas: approximating large dense data through lossy compression and solving linear systems using the tensor-train/matrix-product states format. Learn about optimizations for underlying linear algebra operations, including improvements for orthogonalization and truncation steps based on a high-performance "Q-less" tall-skinny QR decomposition. Discover memory layout optimizations for faster tensor contractions and a simple generic preconditioner. Examine performance results on modern multi-core CPUs, showcasing significant speedups over reference implementations. Gain insights from Röhrig-Zöllner's background in Computational Engineering Science and his work at DLR's HPC department, focusing on numerical methods performance and scientific software development for HPC systems.

Syllabus

Performance of linear solvers in tensor-train format on current multicore architectures


Taught by

NHR@FAU

Related Courses

Coding the Matrix: Linear Algebra through Computer Science Applications
Brown University via Coursera
Mathematical Methods for Quantitative Finance
University of Washington via Coursera
Introduction à la théorie de Galois
École normale supérieure via Coursera
Linear Algebra - Foundations to Frontiers
The University of Texas at Austin via edX
Massively Multivariable Open Online Calculus Course
Ohio State University via Coursera