PepFlow: Direct Conformational Sampling From Peptide Energy Landscapes
Offered By: Valence Labs via YouTube
Course Description
Overview
Explore a 56-minute conference talk on PepFlow, a groundbreaking deep learning approach for direct conformational sampling from peptide energy landscapes. Delve into the innovative use of generalized Boltzmann generators, modularized generation processes, and hypernetworks to overcome challenges in all-atom modeling of peptides. Learn how PepFlow accurately predicts peptide structures, recapitulates experimental ensembles efficiently, and samples conformations with specific constraints like macrocyclization. Discover the potential impact of this research on drug discovery and biomolecular structure prediction through detailed explanations of the methodology, performance on SLiMs, and generalization capabilities for macrocyclic conformations.
Syllabus
- Intro
- Boltzmann Generators
- Modularizing Conformation Generation
- Increasing Effectivity with a Hypernetwork
- Summary of the Pepflow Approach
- Training by Energy to Improve Concordance of Backbones
- Performance of Pepflow on SLiMs
- Can Pepflow Generalize to the Sampling of Macrocyclic Conformations?
- Conclusions
- Q+A
Taught by
Valence Labs
Related Courses
Organic Chemistry in Biology and Drug DevelopmentIndian Institute of Technology, Kharagpur via Swayam Essentials Of Biomolecules : Nucleic Acids And Peptides
Indian Institute of Technology Guwahati via Swayam Prediction of Multi-Class Peptides by T-Cell Receptor Sequences with Deep Learning
BIMSA via YouTube Timewarp: Transferable Acceleration of Molecular Dynamics by Time-Coarsened Dynamics
Valence Labs via YouTube Timewarp: Transferable Acceleration of Molecular Dynamics by Learning Time-Coarsened Dynamics
Valence Labs via YouTube