PepFlow: Direct Conformational Sampling From Peptide Energy Landscapes
Offered By: Valence Labs via YouTube
Course Description
Overview
Explore a 56-minute conference talk on PepFlow, a groundbreaking deep learning approach for direct conformational sampling from peptide energy landscapes. Delve into the innovative use of generalized Boltzmann generators, modularized generation processes, and hypernetworks to overcome challenges in all-atom modeling of peptides. Learn how PepFlow accurately predicts peptide structures, recapitulates experimental ensembles efficiently, and samples conformations with specific constraints like macrocyclization. Discover the potential impact of this research on drug discovery and biomolecular structure prediction through detailed explanations of the methodology, performance on SLiMs, and generalization capabilities for macrocyclic conformations.
Syllabus
- Intro
- Boltzmann Generators
- Modularizing Conformation Generation
- Increasing Effectivity with a Hypernetwork
- Summary of the Pepflow Approach
- Training by Energy to Improve Concordance of Backbones
- Performance of Pepflow on SLiMs
- Can Pepflow Generalize to the Sampling of Macrocyclic Conformations?
- Conclusions
- Q+A
Taught by
Valence Labs
Related Courses
Molecular Dynamics for Computational Discoveries in ScienceUniversity of Massachusetts Boston via Independent Моделирование биологических молекул на GPU (Biomolecular modeling on GPU)
Moscow Institute of Physics and Technology via Coursera Numerical Methods And Simulation Techniques For Scientists And Engineers
Indian Institute of Technology Guwahati via Swayam Foundations of Computational Materials Modelling
Indian Institute of Technology Madras via Swayam Fundamentals of Spectroscopy
Indian Institute of Science Education and Research, Pune via Swayam