Parallel Quantum Algorithms Innovation: PyTorch, Keras, and QiML
Offered By: ChemicalQDevice via YouTube
Course Description
Overview
Explore parallel quantum algorithms innovation using PyTorch, Keras, and QiML in this 58-minute presentation. Dive into a promising method for decreasing runtime and minimizing compute resources while incorporating quantum mechanical effects into machine learning workflows. Learn how running multiple smaller algorithms in parallel can enhance model performance. Examine previous results showing increased model accuracies to 100% through the parallel addition of quantum layers using PyTorch or Keras frameworks. Gain additional algorithm insights, tackle more challenging versions of datasets, and study overfitting across various quantum algorithm neural network architectures to better understand the impact of quantum mechanics on classification performance. Access the presentation PDF, code repository, and related references to deepen your understanding of this cutting-edge approach in quantum machine learning.
Syllabus
Parallel Quantum Algorithms Innovation: PyTorch, Keras, QiML
Taught by
ChemicalQDevice
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent