Parallel Quantum Algorithms Innovation: PyTorch, Keras, and QiML
Offered By: ChemicalQDevice via YouTube
Course Description
Overview
Explore parallel quantum algorithms innovation using PyTorch, Keras, and QiML in this 58-minute presentation. Dive into a promising method for decreasing runtime and minimizing compute resources while incorporating quantum mechanical effects into machine learning workflows. Learn how running multiple smaller algorithms in parallel can enhance model performance. Examine previous results showing increased model accuracies to 100% through the parallel addition of quantum layers using PyTorch or Keras frameworks. Gain additional algorithm insights, tackle more challenging versions of datasets, and study overfitting across various quantum algorithm neural network architectures to better understand the impact of quantum mechanics on classification performance. Access the presentation PDF, code repository, and related references to deepen your understanding of this cutting-edge approach in quantum machine learning.
Syllabus
Parallel Quantum Algorithms Innovation: PyTorch, Keras, QiML
Taught by
ChemicalQDevice
Related Courses
Deep Learning with Python and PyTorch.IBM via edX Introduction to Machine Learning
Duke University via Coursera How Google does Machine Learning em Português Brasileiro
Google Cloud via Coursera Intro to Deep Learning with PyTorch
Facebook via Udacity Secure and Private AI
Facebook via Udacity