Random Graphs and Nonlinear Spectral Gaps
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore a lecture on random graphs and nonlinear spectral gaps presented by Pandelis Dodos at the Hausdorff Center for Mathematics. Delve into the challenging problem posed by Pisier and Mendel-Naor regarding regular expander graphs and discrete Poincaré inequalities for functions with values in Banach spaces. Examine the positive results for Banach spaces with unconditional bases and cotype q ≥ 2, and understand the transfer argument by Naor/Ozawa and nonlinear embedding by Odell-Schlumprecht. Learn about the concept of long-range expansion in regular graphs and its implications. Discover two key findings: the high probability of uniformly random d-regular graphs satisfying long-range expansion, and the discrete Poincaré inequality for functions in Banach spaces with unconditional bases and cotype q in graphs with long-range expansion. Gain insights into the nearly optimal Poincaré constant estimate proportional to q¹⁰ in this joint work with Dylan Altschuler, Konstantin Tikhomirov, and Konstantinos Tyros.
Syllabus
Pandelis Dodos: Random graphs and nonlinear spectral gaps
Taught by
Hausdorff Center for Mathematics
Related Courses
An Introduction to Functional AnalysisÉcole Centrale Paris via Coursera The Finite Element Method for Problems in Physics
University of Michigan via Coursera Introduction to the Theory of Distributions and Applications
University of Pavia via iversity Методы и инструменты системного проектирования
Moscow Institute of Physics and Technology via Coursera Product Design Using Value Engineering
Indian Institute of Technology Roorkee via Swayam