nnScaler: Constraint-Guided Parallelization Plan Generation for Deep Learning Training
Offered By: USENIX via YouTube
Course Description
Overview
Explore a 14-minute conference talk from USENIX OSDI '24 that introduces nnScaler, a framework for generating efficient parallelization plans in deep learning training. Learn how nnScaler addresses limitations in existing search spaces by empowering domain experts to construct custom search spaces using three primitives: op-trans, op-assign, and op-order. Discover how this approach captures model transformation and temporal-spatial scheduling for any parallelization plan. Understand the application of constraints to prevent space explosion and how nnScaler can compose both existing and new search spaces. Examine experimental results demonstrating up to 3.5× speedup compared to solutions like DeepSpeed, Megatron-LM, and Alpa for popular DNN models such as SwinTransformer and AlphaFold2.
Syllabus
OSDI '24 - nnScaler: Constraint-Guided Parallelization Plan Generation for Deep Learning Training
Taught by
USENIX
Related Courses
Intro to Parallel ProgrammingNvidia via Udacity Introduction to Linear Models and Matrix Algebra
Harvard University via edX Введение в параллельное программирование с использованием OpenMP и MPI
Tomsk State University via Coursera Supercomputing
Partnership for Advanced Computing in Europe via FutureLearn Fundamentals of Parallelism on Intel Architecture
Intel via Coursera